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NON-UNIFORM FLOW IN MULTISTAGE
AXIAL. COMPRESSORS

Frank E. Marble

Division of Engineering and Applied Science

California Institute of Technology

ABSTRACT

It has been suggested by the author that some aspects of
severely distorted flow into multistage compressors may be exam-
ined utilizing an integral technique. The general idea of the proposed
technique is clear enough; the appropriate equations of motion and
energy are integrated peripherally and radially, using reasonable
assumptions for the distributions of velocity and thermodynamic
properties, and thereby reduced to ordinary non-linear differential
equations for the parameters that describe the distributions. The
questions that arise are whether the cascade characteristics may
be described appropriately over wide variations of inlet angle, in-
cluding stall, and whether the profiles may be characterized by a
sufficiently small number of parameters to make the technique
attractive.

The present paper examines a specific example of distorted
inlet flow through the two-dimensional annulus of a multistage com-
pressor which can be solved completely. It is shown that the essen-
tial features of this exact solution, including stall, may be described
by a two-parameter family of profiles and that an integral technique,
utilizing these elementary profiles, will yield essentially the same
results. While it is not clear that comparable success would hold for
the three-dimensional problem, the results confirm the contention
that the two-dimensional problem may be treated with acceptable

accuracy by an integral technique.




1. INTRODUCTION

Non-uniform flow conditions entering multistage compres-
sors are among the most significant factors that limit the perform-
ance of these units and restrict the operation of engines of which
they are components. kol Under some circumstances the non-
uniformities are attenuated in the first few stages while otherwise
they may persist through the entire machine, causing severe per-
formance degradation and unacceptable blade loads. The develop-
ment or smoothing out of severely distorted inlet states is a complex

4 :
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cooperative phenomenon among many successive stages
not readily understood in terms of individual blade row performance.
It is the aim of analytical work in this field to formulate such pro-
lems within the requisite accuracy and to find methods by which
physically relevant results may be extracted. It is the contention
of some workers, including the author, that, preferably, such
formulations and methods should lead relatively simply from a
physical model to significant results.

One contender for the appropriate analytical technique is
an integral method in which the equations of motion and energy are
integrated over the compressor annulus at a fixed point along the
compressor axis. The most familiar example of this technique is
the Karman integral method for the boundary layer, although the
general idea has found wide application. The applicability of the
technique to the problem of asymmetric compressor flow rests
not only upon whether it is simpler than a detailed numerical cal-
culation, but even more critically, whether the velocity, pressures
and temperature profiles may be described adequately by a small
number of parameters and whether the blade characteristic can be
specified reasonably over a wide range in angle of attack. One can

not settle these questions for all circumstances, but one example

in which an '""exact'' calculation and an integral method are in




agreement would be a guide to the merits and limitations of the
method.

It is the aim of this paper to construct such an example in
which the exact solution can be carried out. The problem utilizes
a blade row and stalling characteristic and a solution technique
introduced by the author(b) several years ago in the analysis of
propagating stall in single blade rows. To make matters simpler,
the example considers a two-dimensional annular section of the com-
preéssor, represented as a repetitive flow pattern in the plane, and
the fluid field is regarded as uncompressible and inviscid although
the individual blade rows impose losses on the flow across them.
The essential questions to be asked of the example is whether the
profiles-especially the velocity profile-can be described in terms
of a small number of parameters. If the required number is few,
then the possibility exists that the integral approach may prove

useful in treating problems of distorted inlet flow.




2. BLADE CHARACTERISTICS AND
REPRESENTATION OF STALL

Consider the flow of an incompressible fluid through a

two-dimensional cascade utilizing the notation of Figure 1; B and
B.are the relative inflow and discharge angles under conditions of
steady, uniform flow and UV is the constant axial velocity. We re-
place the cascade by an actuator surface coincident with the y axis.
Under these circumstances the pressures ahead and behind the cas-
cade are uniform and denoted 42, and 77 respectively. The charac-
teristics of the cascade will be described by the turning angle,

(B~- @ , and the static pressure rise, Po- 7 2 4P, in terms of the
inlet angle @, . We shall take these characteristics to be those
given in Figures 2 and 3 , a form introduced in Ref. 6 , for the
analysis of propagating stall. The pressure rise, Ay , isa discon-
tinuous function of inlet angle and drops to zero at the local inlet
stalling angle, rs", but is continuous and smooth for angles (5. < ‘S,"
The outlet angle, ({,, is a smooth function of [ through the stall.
The stall is thus characterized by the absence of static pressure rise
in the separated blade channel, that is, the relative diffusion drops
to zero.

Now we consider non-steady flows in the cascade to be peri-
odic over a range awrR , corresponding to the periodicity about the
compressor annulus, and to be reducible to steady flow by an ap-
propriate velocity of translation along the y-axis. A disturbance
that enters from a fixed obstruction ahead of the inlet is steady with
respect to the stationary blade rows, but we must move with a verti-
cal velocity AR with respect to a rotor blade row to achieve a
steady flow field. In the case of self-induced disturbances, such as
a stall propogation that moves with an angular velocity w , we must
move with a velocity - wR along a stator and with a velocity AR- wR
along a rotor in order to achieve a steady flow field. This is

possible because the actuator surface concept suppresses effects
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of individual blades and these arc the only identifiable features of
blade row geometry.

Where the appropriate transformation along the 4 -axis
has been made, we shall call the angles of the steady flow, 6, and
6, upstream and downstream respectively; the relations between the

relative flow angles F‘ » Ba and the steady absolute angles 6, ,

6, are
&Me, = tﬁﬂﬂ, & —‘155 .
for a stator and
CLan B, - tm/.?, = i:—"? = J;R 5

for arotor where w is the absolute angular velocity of the disturbance
and N is the angular velocity of a rotor. For a stationary disturbance
introduced at the inlet, we set w=0 ; for a propagating stall, we de-

termine w as a characteristic value.
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3. NON-UNIFORM FLOW IN
A SINGLE BLADE ROW

Under any of the circumstances just considered, the flow
field induced by a single blade row may be described as in Figure 4,
in which any existing stalled region of length (27@)«  is located
symmetrically with respect to the z -axis. The flow angles 6, and

& and the tangential velocities ¥V, and V. are those that exist

in the absence of stall. We are concerned with small deviations from
these two uniform fields introduced by a stall or an upstream dis-
tortion.

The perturbation equations applicable to either upstream

or downstream flow fields, are

2 L2 .o 3
2x a;.

24 “w 2 %
Uar"v?a_g.'*}j'sg” 4
2> 2 Y id
Ua,*\/s-g_" rb—s <0 5

The disturbance % of the flow angle from the steady flow angle
may be expressed in terms of the velocity perturbations and if we

retain only terms linear in perturbation quantities, this relation is

(14 tarn*60)S = —L—/C = f lame 6
Now if we utilize equation 3 to eliminate the term f—‘;‘ in favor of
—aa'f;j in the x-component of momentum conservation, equation 4,
we obtain - u"éa,; D‘L - -5- tma)* é%-:s = o and, upon introduc-

ing the flow angle perturbation, equation 6,

N S
//+a.ue/u‘a—gg— = :—'%’ 1

Similar operations on the second equation of motion, equation 5,

yields
98 , . 12® 8
(1+ a8l 55 T
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If, therefore, we choose two new dependent variables
@ = F #

Px : T 10
gVt put (reten'd)

the two equations of motion, in the forms of equations 7 and 8,

become
20 . 2@
2x 24 11
2 . _ 22 12
oF 2%

Thus the complex variable 7 @ may be considered an analytic

function of the complex variable x+4ig = X
6)-07' @ = W) 13 o

This description of the pressure and flow angle perturbations
in terms of an analytic function does not, of course, necessitate that
the flow be irrotational. The irrotational part of the field is deter-
mined by W/¢2), but additional ''shear flow' solutions may be super-
imposed because, when the flow is steady, such flows carry no pres-
sure field and induce no angle variations. In the present problem
the admissible shear flows are easily obtained by writing a linear

combination of equations 4 and 5 to give
B e {_& L Faoe i o9 ( 2 14
{asen*we”l U ] G*SU‘ = o

where the operator denotes differentiation in the streamwise direc-
tion. The quantity in brackets, which is proportional to the pertur-
bation of stagnation pressure, therefore varies only from one stream-

line to the other, and the integral of equation 14 may be written

ﬁ_‘ﬁm’ % ()*tm‘G)P = -é—g(‘&-x{o\ue\

=)
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From equations 15 and 6 it is cvident that f is the vorticity and
that it is transported along the undisturbed strecamlines. In fact,

from these same equations, the two velocity components may be

written
w 1
L O Ghee Rl
v © (14 bad@)U ey 16
T‘;- S -@me 2O - IO {(y-zrtome) 17

(14tow'®) U

Now let us consider a single blade row, represented by an
actuator surface located on the y-axis, for which the undisturbed
uniform flow moves at an angle &, upstream and 6: downstream
in accordance with the diagram of Figure 4. There is a corres-
ponding pressure rise Ajp across the actuator. Let us suppose
that, due either to a self induced or upstream induced disturbance,
the cascade stalls over a fraction & of its circumference, and that
the stall region is located as shown in Figure 4. According to the
chosen stall model, the stall induces no disturbance to the relative
discharge angle from the cascade, but the pressure rise 4p drops
to (say) zero across the stalled portion. The condition on the pres-

sure field is then that

eu( l*tm"e._)ﬁlo,-a) - gu'(Hfau"e.)G’. te, y)

-a : - ¢ _J € ne X
. ( T" > n % n Z 18
l o N L/se wheore

so that the difference between the solutions for the pressure fields
upstream and downstream consists of positive jumps at the points

Yo (neg) amR and equal negative jumps at the points = (n-£)arR
Since (@ and (3, are harmonic functions, one may begin to con-
struct a solution by obtaining the harmonic function that represents

the value of 63 to, gy ~ (% te3) anl is regular elsewhere. Now




the imaginary part of the function 7 log (2-i9) Thas a positive
unit jump at sy for z=-o+ and a corresponding negative jump
for ¥ = o- . The sort of function we require may then be con-
structed by situating the appropriate logarithmic singularities at
g (neZyanr and the negative of such functions at ¢ <nW-F)anR
The analytic function

F ez 7 dog sabn (55 2721

[P | [-,f’;& +i g ]

posesses this property, since the hyperbolic sine in the numerator

has simple zeros on the y -axis at 13;“ & n~%‘_— , Figure 5, and the
denominator has corresponding simple zeros on the y -axis at
ror R A £ . The values of the real and imaginary parts
along the 4 -axis, which are involved in satisfying matching condi-
tions across the actuator line, are shown also in Figure 5. The
real part, Fix,4) is single valued but exhibits the expected
logarithmic singularities at 2/anr = (mg.).' . The imaginary
part, Gxyg) with the branch cut taken along the y -axis, exhibits
a jump of magnitude 2 in the intervals n-2 = -:-:1‘7-& ¢w% andis con-
tinuous elsewhere. Far upstream of the cascade, as %X—>-°°
G -0, 2\ has a constant value &« and far downstream, as
x—>o0 , G(oo,4) has a constant value - & .

Now the solutions (P.u.v and @,.(!.5\ for the pres-
sure field can be constructed from a multiple of G ¢x,y) and an-
other harmonic function which must be regular except at the singu-
larities along the imaginary axis. Hence the supplementary func-
tion can differ from a multiple of FAexy) by at most a constant.
The flow angle and pressure far ahead of the cascade can vary by
only constant magnitude from the undisturbed; these values corres-
pond to variations in flow angle and pressure imposed far upstream,
If we assume these to vanish, then the prsssure and angle pertur-

bation fields become
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(/4 t.»'&)@ * AF{K,’) + B[ch.y)-«] 19

((*t"‘a)@, s - 8/"(;-.3) + A[Gur.;l - ] 20
a

(l*tmze.)Q o B gh s [?_:’._ % B][Gu.gna ] - ?(-',L: « 21

(1+tandB) O, = - -?437-:-3] Fongr ¢+ Aleiqsax ] + D o

where the constants A, B, 2 remain to be determined. The avail-
able matching conditions are (i) that the axial velocity is continuous
across the cascade and (ii) that the relative discharge angle is given
in terms of the inlet angle according to Figure 3. For the present
consideration we shall assume that the relative discharge angle is
fixed, independent of the inlet angle. The representations of the

axial velocities upstream and downstream of the cascade may be

written
L= -8 - 8 taws, 23

Uy

* (R 35 wma) (8 2 ) e

+a, Fto, $-ztave,) + lh[ 6 (o4, 3-xtaney) *“1 24

Where w, has been supplied with an additive constant which assures
that w, averages to zero far downstream. The condition that the
relative discharge angle from the cascade be invarient requires ex-

pressing the relative flow angle perturbation in terms of perturba-

tions seen from the steady flow field. Referring to equations 1 and 2,
which relate these flow angles,

LR

[(ﬁu' ;| sTaTor
T (9"19’) - tm(P.P') =

wR-_ AR .
Veu' )

25
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so that to the first order in small disturbances,
wR u,'
(T)"J 2 STATOR

(1/4£anzp)ﬂ, - (/fl'-wlﬁ)J' b 26
wr _QR\w .
(% v G i meres

The condition that the outlet angle be unchanged is therefore

WR
v
(I*tan‘a)@;fapa" _":L(o‘,}) s o
we _ar| Y 27
v v
which we write in the form
B o) + K 2oy =o 28
h (04 v '3 3,
where
w&/u
5 STATOR
[+ tantE,
a% wr/y - R
; RoTOR
I+ t-v\‘GL 29

Now all of the field quantities are represented by equations 19

through 24 and substitution into the two matching conditions provi-

des relations among the unknown coefficients. In fact, the coeffic-

and [G(-..-’.)-m] must vanish identically because

ients of F(0:}y)
os g & AR

these two functions are orthogonal over the range
Substituting into the expression LJ-*— (o, 41 < T':—* (0,3 for continuity

of axial velocity leads to the algebraic equations

-8, 2P

tan ©, tanbh -
el B 1eted SB- . 1+ tondB, tUL*

[ Fam)a
11tonle, 11tandOr 14tad®, 1+tadO,

S S nsast i
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l4tomB, l4tanB. A st 1+tav'e, B +b, /+tom'd, SU“

Similarly, substitution into the condition on the cascade discharge,

angle, equation 28, gives the sccond pair of algebraic equations.

- K < A « 1- K‘tMs; B + Kd.,_ = 1- tane‘ ap 32
I+ ton, I+ bon'S, [+ towBe fu*
L KGueR A« K B+ Kby * e S8 33
14 tqu"el 14 tom Oy |+ tan®y §U

These equations constitute a linear set for A4, B, 4., b, and may

be written, after some manipulation, in the matrix form

'4 ~ N
il B ) tan®, tanbr ) { A .’ tau O,
1+ tadde, 1+terde, I+tad6, 14tal6 =, & 1+ tan'®,
( - tawb _ tew: ) 5 5 . |
14 tad'®, |4tatel (urf...‘a, ut.u‘o.] ° B[, [1+tee,
- K 14 Qas\ﬂ = ) ) ]
i+ e.«"&; I+ tm", 1+ tar > ) (= e 14 ten's,
K teanb, ! )
——— _x_ o o
L(htn'a. w8, 1+tan'®, = OJ J b ) J
34
The determinant of the matrix on the left,
% ( X )\ “+ (_____..K‘m‘o' - \)L 35 }
ar- 1+ tan6, 1+tade®, \ 4 tadO,
is non-vanishing and the resulting values of A, B, a., b, are

proportional to }—‘:—}% , the pressure loss coefficient at stall.
The results will not be written down explicitly now because they

will emerge later in a more general form. It is well to note,
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however, that because Q. #¥0 , b, o , the flow far down-

stream of the cascade is permanently distorted and corresponds to
a wake generated by the vorticity sheet from the stalled zone.

The physical problem of the single blade row is still in-
complete. It has been assumed that the cascade is stalled over a
certain portion of its periphery but the conditions which lead to the
stall have not been considered. We must examine two possibilities:
i) the stall is induced by a flow distortion originating upstream of
the cascade and ii) the stall is self-induced. The case of the self-
induced or ''propagating stall'' will be presented in this section; the
stall induced by flow distortions will be treated subsequently.

Now whether the cascade stalls locally is determined,

according to Figure 2, by the local inlet angle @, . In the absence

of disturbance the uniform inlet angle @, 1is as sumed less than the

stall angle P,“, and in the presence of the stall, the perturbation
(s.l(o, %) must relate appropriately to the angle increment (3."-(3.
required to stall the airfoil. Using the relationship we have found

between absolute and relative perturbation angles, we have

(I* éan‘[’,)(’,'(ﬂ') 2 (latqu,'e,)@' (6,3) + (1+tan's,) K T“j‘-‘- Lo, %)

Now using the solution forms we have found for ®, (x.y) and —:'-" (x.9)
(14 bm,"(!.){l, ‘toq) L [(H tavwe,) - ( Hiau'O,.)xbaue.] @,
-~ C1ttant®,) KG),

s it [(nfdo.- (-d”‘a.mfaua.)a + (uf._l,,)KA] F o, 4)

I+ taunts,

R lstod@) - (14tad'@) K Tow e,)A - (11ta’e,) K a][G (o= 3)-~ ]
36

-
1+ f.-‘ S,

The stable, self-induced stall cell requires that the inlet flow angle
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change from a value below P," to a value equal to or greater than
ﬁ.* at the edges of the cell and this condition can be satisfied only

if the coefficient of F (9, 3) vanishes. Thus

(1+tat@®)KA + Il«ém'o, - (1 tate) K faue,] B :=o 37

This additional condition on the constants A and B may be taken
together with the fourth of equation 34, another homogeneous condi-

tion, to require that, for a non-trivial solution,

( Ktawo, | _ K
1+ ta'®, l+tad©, 1=+ tont®,
o
= ( =l K*Q\Qe| =3 !
| + tako, 14 tan'®, 14 tauw'©e 38

which constitutes a characteristic value condition for K . Physically,
this states that the self-induced stall cell must move with a certain
speed in order that the flow field satisfy the condition on the inlet
angle approaching the stall cell. This free or self-induced stall
cell has become known as propagating stall because it must move
along the blade row at this speed to assure the stability of the lead-
ing trailing edges of the stall cell. The value of the determinant in
equation 38 gives the characteristic value as

Z3
(%

(1+ tan'e, ) K e
)28 9

v

39

= ——— ]
\/l* tamt®, = - .
S 1{!0

where the relation between relative and absolute flow angles has been
used to obtain the final expression. Here (3. is essentially the rela-
tive inlet stalling angle of the blade row in question and wR is the

velocity of stall propagation.
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Note that the value of K determined for the self-induced
stall does not make the matrix in equation 34 singular but allows
determination of the complete set of coefficients, in particular,

the values of &y and b, which give the stall wake that appears far

downstream from the blade row.
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4. SINGLE BLADE ROW; GENERAL
ANALYSIS

The analysis of section 3 has shown that the vorticity shed
from a stalled blade row produces a wake that deforms the flow field
far downstream of that blade row. It follows, moreover, that sub-
sequent blade rows, in relative motion to the stalled region, will
experience strong deviations of the relative inlet angle which may
induce stall in that blade row also. In general, then, solution of the
multistage problem will require knowledge of the behavior of single
stages with adeformed input. It is the aim of this section to find such
a solution, suitable for use in multistage analysis.

In the previous section it appeared that the axial velocity
profile from a stalled single blade row, consisted of a linear com-
bination of F (g 3-xtawd) and G(o+, y-rfav®)+« even though the flow
angle perturbation vanished far downstream. Therefore a distor-
tion of this sort will appea r upstream of the next blade row. In gen-
eral, then, a blade row will have some linear combination of
Flo,y-xtamo) and G/(o-, ¢-rtaub)-« upstream; a solution that accommo-
dates this initial condition will permit also a distortion of this type
to be prescribed ahead of the entire compressor.

To satisfy these requirements, the pressure and angle of

perturbations may be written

(1+tans)62 = AFixg « Botrngi-a«] ~Ca 40
(1+1an'0) B, - “BFexy) + AlGuyp-o ] «+ D 4]
(1+tanl@)B) « AFcxy s [£8.-B][Genyro] - Tha + Co 42
(1+ ta'8)6, = [ 2E -3 ] Feny) « A[Gemprem | + Dax s
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while the corresponding axial velocity distributions are
%y - S - = S,
R (@n I,tmro'“) (@: ey ) Ton 8,

“ 0 (0 g-rtaund) + b [Gom g rtand) -]
44

= - > AP K A o= =
( L gUt 1rtadg c/-vé"'o‘) (9: —fﬁt—;,&x\ 45

<I¥

“as F(o,9-2xtawd) + b.[b(u. Y -xtauwo,) +o ]
The prescribed conditions ahead of the blade row determine the
values of a,, b,, €, D, and « and the values of A, B , a.
b, and D, are required. These constants are evaluated as a

consequence of matching the axial velocity perturbations.

Wite, gy = W, to,4) 46

and fixing the relative discharge angle
@;(0,,‘ ~ K ,‘5‘(0’\’s o 47

The pressure loss caused by stall has already been accounted for
in constructing the solutions. Now a prescribed inlet distortion,
fixed by the values of a and b, , may or may not induce stall
over a portion anr « of the blade row periphery. This ques-
tion is determined by the relative inlet angle; if stall is indicated,

ap in equations 40-45 is set equal to the value appropriate for
the blade row, if not, 49 is set equal to zero.

Another feature that appears when the stall is forced by the
inlet distortion is that the value of K is prescribed. For a station-
ary distortion, such as strut or a separated inlet, w <o , but in
the unusual circumstances of a moving disturbance, which may occur
with an ingested vortex, the value of «w is assumed known. This

will mean that, in general, the inlet angle distortion,
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will not be a simple square wave G ¢o-,3) but will contain the singu-
larities characterizing F e, 3y . The condition for stall in this
circumstance will be discussed later.

Substitution into conditions 46 and 47 leads, in a straight-
forward manner, to the result that D, =o and a set of linear
algebraic equations for the unknown quantities A, B, a., by -
These are identical with the equations 34 except for additional terms

on the right-hand side

e 61
-—:——- - — _t._:g: P tand, = o
(41an®, I+tan'®. 1+ tad @, 1+ tan®, A
- Tan§ tan - 2 ’
tr tad®, Ittemb. 11tende, 1+tale, ° ! B
3
- K K tau®, ’
¢ 2 * ? (] (o] a
1+t tan'@, /+ Lan'®, 14 7an b, 2
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ay
L bL) L ) /“-5 /“‘|‘ L*u )




where Yij and/u.,-.’- are functions of 6.) 6., K and are tabulated

in the Appendix.

Now a, and b, are given through prescription of the
flow far upstream but -‘?33; is either a known value or zero accord-
ing to the approach angle relative to the blade row. The relative
inlet angle perturbation, given by equation 36, becomes for the

present example,
(14 s 3,) ,"t0.3)

b 5#7:;-,. (1+tau'e, ) KA + [\- *':“" (utw«'o.)x]s - (Ht-w‘e.)xa..} F o, %)

\+tan' O,

.

tan® —_ taw - (1etaw
- {.{l-l—:‘Tm-‘..‘H t--‘a,\K]A * Titede VT RICE (14taw'®) ¢ b, }[g(.-,,;..]
50

nNe-g¢

Because the I fF“"’ oy =o this does not, on
€20 Jo_opx
the average, contribute to the inlet angle in the region under con-
sideration. The function G(e- $)-« however, equals /-«  in the
stalled region and -« in the region exterior to the stall, In detail,
then, the inlet angle perturbation is, in the distorted region
~ 0 o “) K -2 ( dt

P"“"” T ke su'-\)
P' (1+tautd,) ( 1+ bani®r) A

K 1- K* (1+Tanto.
ay * Aol + (n‘l....‘e.) L,

(1+tom'6.) A (1 temB.) A 51

-

where A is the determinant given in the Appendix. Then if

~

f‘-"’-l) 2 (3|'. (3, 52

the cascade will stall in the region -7Ra & 3 £ NR& in which the

upstream distortion impinges upon it and the solution is correct as
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it stands. If, however, the inequality 52 is not satisfied then

the solution given by equations 49-52 must be evaluated with
TAﬁ set to zero. This condition also determines thc pressure
loss far downstream from the cascade, according to equation 42,

as 8P, or zero.

L
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5. ANALYSIS OF MULTISTAGE COMPRESSOR
WITH WIDE SPREAD BLADE ROWS

The results of the last two sections demonstrate that a
compressor blade row, represented by an actuator surface, which
is subjected to a distortion in axial velocity profile that is a linear
combination of F‘%J) and G(a-,,)-x , produces a distorted dis-
charge flow which is another linear combination of the same two
functions. This general result holds, whether or not the cascade
in question stalls as a result of the distorted input. It follows,
then, that we can construct the flow in a multistage compressor,
represented in this two-dimensional approximation, from linear
combinations of the two fundamental profiles given above. The
situation holds regardless of how many of the various blade rows
stall.

Number the blade rows from the inlet, the first of which
may be the inlet vanes, the successive ones may alternate rotor
and stator rows. Number the region ahead of the n'Ch blade row
by the subscript n , that is um, P"'.Q'Qand the region downstream
by the subscript ne , that is km, ; @.,,, Pov 3 Gz
Associated with each of these blade rows is a stalling inlet angle
(é..' , a fixed relative outlet angle (9,‘., , a pressure loss at
stall, A, , and a value K, of the blade motion parameter. For

{low fields generated by a stationary upstream disturbance, the

values of K, are

o ,' STATOR
Ku = -2 RN
o ; ROTOR 53
|+ twule._

We presume the unperturbed state to be known and this means, in
detail, that values of U, R, 6, , @. are known. The perturbations
we wish to compute are caused by a distortion upstream of the com-

pressor inlet described by the values of @ and b, ; generally

i et e~ e - — - -




W e : —— I i

-22-

this takes the form of a distortion to the axial velocity profile given
by

— = a, Feoyy = b.[G(""}"“] 54
We shall assume, for the purpose of this demonstration, that the

pressure and angle disturbances vanish far upstream and that

&,=0 . Note specifically that there is no perturbation to the total

anR
gu.dg e

o

flow rate, that is

so that the mean or reference axial velocity is undisturbed.

Now the single blade row analysis of the previous section
demonstrated that, for a blade row with prescribed characteristics,
the flow distortion downstream was determined by the flow distor-
tion entering from upstream along with the knowledge of whether or
not the modified inlet flow stalled a section of the blade row in
question. The relationship of the distortion in the discharge to the
conditions ahead of the blade row is given by expressions of the
tvype shown in the third and fourth of equations 49 and the condition
for stall is determined by considerations similar to those of equa-
tions 51 and 52. There is no difficulty in generalizing this scheme
to one that will apply to any blade row of a multistage compressor.

The generalized calculation is carried out in the following
steps. First suppose the nth blade row is stalled over the sections
-«NR €4 ¢ xnk . The coefficients of the downstream perturbation
and the perturbation to inlet angle in the stalled region may be

written in the matrix form

1
" ]
Gona /A—,, (Bn,Bnaiy Ku) e i Q w
b | : Jii bw
-~ = - avp,
. ponsion,om )| | 22
= J
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The nine coefficients of this matrix are given in the Appendix.
Second, determine whether the value of é.l is greater or less
than the known value of @,"- B - I# (5:‘ iE (p,."- Bw) then
the calculation above is correct and the resulting information per-
mits proceeding to the next blade row, If, however, {a",' < ((3,,"-(3,.)
the above calculation must be repeated with the element A‘p"/gu'-
replaced by zero. Then this new information permits proceeding
to the next blade row. The loss in pressure rise across the stage,
it will be recalled, is & %E"‘_ or zero depending upon whether the
blade row is stalled, and these increments will accumulate as we
pass through the compressor.

One further point should be mentioned in order to clarify
the application of this procedure; the circumferential coordinate of
each blade row has been adjusted so that the distorted region appears
symmetrically located with respect to the localy ~axis. To recover
the physical flow field, the resulting profiles and angles should be
applied with respect to an undisturbed streamline passing through

the machine.

3
|
|
.%
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6. CONCLUDING REMARKS

The example that we have examined in some detail has
d emonstrated that, within the small perturbation theory, the
exact solution consists of a linear combination of two basic flow
fields. In particular, the axial and tangential velocity profiles
constitute a two-parameter family where the parameters are
functions of axial position through the compressor.

It is clear then, that if we chose to represent the solution
in terms of this two-parameter family for an integral method, and
employ the actuator surface characteristics of the preceding anal-
ysis, the integral method will yield the same solution. For example,
we represent the axial velocity in the form
3“ = L Fexepy =~ M, LGery)-u)

+ L F(o, z-3tau@)+ v, |G (0, -k bame - ]

where the parameters L., ™, are unknown but £, ;m, are given.
The quantities"/y and ﬂ/s,ut and the corresponding quantities down-
stream of the blade row have corresponding representations. Inte-
gration of the equations of continuity and motion in the peripheral
direction establishes the relationship between the parameters that
occur in w, v and P ; detailed matching across the actuator surface
establishes the relationship between the parameters upstream and
downstream. Note that the matching across the actuator surface
corresponds to applying a geometric constraint representing a blade
shape or to a force field representing a distributed blade loading.
As a result, the differential equations that describe the variation
of parameters along the compressor when the load is continuously
distributed, degenerate to difference equations for the compressor
represented by a succession of actuator surfaces. These difference
equations correspond to the matrix relations given in equations 48,

or more precisely, equations 55,
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APPENDIX

The determinant of the matrix on the left-hand side of

equation 48 is
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Figure 1. Diagram of actuating line,
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